Preserved number of entorhinal cortex layer II neurons in aged macaque monkeys.

نویسندگان

  • A H Gazzaley
  • M M Thakker
  • P R Hof
  • J H Morrison
چکیده

The perforant path, which consists of the projection from the layer II neurons of the entorhinal cortex to the outer molecular layer of the dentate gyrus, is a critical circuit involved in learning and memory formation. Accordingly, disturbances in this circuit may contribute to age-related cognitive deficits. In a previous study, we demonstrated a decrease in N-methyl-D-aspartate receptor subunit 1 immunofluorescence intensity in the outer molecular layer of aged macaque monkeys. In this study, we used the optical fractionator, a stereological method, to determine if a loss of layer II neurons occurred in the same animals in which the N-methyl-D-aspartate receptor subunit 1 alteration was observed. Our results revealed no significant differences in the number of layer II neurons between juvenile, young adult, and aged macaque monkeys. These results suggest that the circuit-specific decrease in N-methyl-D-aspartate receptor subunit 1 reported previously occurs in the absence of structural compromise of the perforant path, and thus may be linked to an age-related change in the physiological properties of this circuit.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RAPID COMMUNICATION Preserved Number of Entorhinal Cortex Layer II Neurons in Aged Macaque Monkeys

GAZZALEY, A. H., M. M. THAKKER, P. R. HOF, J. H. MORRISON. Preserved number of entorhinal cortex layer II neurons in aged macaque monkeys. NEUROBIOL AGING 18(5) 549–553, 1997.—The perforant path, which consists of the projection from the layer II neurons of the entorhinal cortex to the outer molecular layer of the dentate gyrus, is a critical circuit involved in learning and memory formation. A...

متن کامل

Conservation of neuron number and size in entorhinal cortex layers II, III, and V/VI of aged primates.

Past dogma asserted that extensive loss of cortical neurons accompanies normal aging. However, recent stereologic studies in humans, monkeys, and rodents have found little evidence of age-related neuronal loss in several cortical regions, including the neocortex and hippocampus. Yet to date, a complete investigation of age-related neuronal loss or size change has not been undertaken in the ento...

متن کامل

Cognitive decline is associated with reduced reelin expression in the entorhinal cortex of aged rats.

Brain regions and neural circuits differ in their vulnerability to changes that occur during aging and in age-related neurodegenerative diseases. Among the areas that comprise the medial temporal lobe memory system, the layer II neurons of the entorhinal cortex, which form the perforant path input to the hippocampal formation, exhibit early alterations over the course of aging Reelin, a glycopr...

متن کامل

Short-latency category specific neural responses to human faces in macaque inferotemporal cortex

In this article I would present evidence to show that timing of the flow of neural signals within the ventral visual stream is a crucial part of the neural code for categorization of faces. We recorded the activity of 554 inferotemporal neurons from two macaque monkeys performing a fixation task. More than 1000 object images including human and non-primate animal faces were presented up to 10 t...

متن کامل

Postnatal development of the hippocampal formation: a stereological study in macaque monkeys.

We performed a stereological analysis of neuron number, neuronal soma size, and volume of individual regions and layers of the macaque monkey hippocampal formation during early postnatal development. We found a protracted period of neuron addition in the dentate gyrus throughout the first postnatal year and a concomitant late maturation of the granule cell population and individual dentate gyru...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurobiology of aging

دوره 18 5  شماره 

صفحات  -

تاریخ انتشار 1997